Recherche dans l'ensemble de la station Pièces en aluminium Vingt-et-vingt-cinq

Comment déterminer le centre de rotation du rotor lors de l'utilisation d'une machine CNC à 4 axes ?

Études de cas Ressources 1077

Nowadays, a four-axis rotary table is a common piece of equipment in the machine shop. In order to complete the machining of multiple faces in one coordinate, the programming coordinates must be synchronized with the coordinates of the rotary table. In this article, we will share a method to determine the rotation center of a 4-axis rotary table.

Steps to Determine Center Rotation of a 4-Axis Rotary Table

Here, we show a 4-axis rotary table that rotates around the X-axis of a machine tool, where the axis of rotation is called the A-axis. In a word, all we need to do is to determine the Y/Z coordinates of the center of rotation on the 4-axis machine.

In addition, the X coordinate values are determined by the placement of the product, so we won’t go into detail here. The following are the specific steps to determine the center of rotation.

datum plane

 

Step 1: Calibrate the Fixture Reference Plane

Firstly, use the calibration table to calibrate the fixture datum plane (the yellow surface). Then, set the calibrated datum plane to the 0 degree position of the A-axis.

set the Y coordinate

 

Step 2: Set the Fixture Datum Plane

After setting the datum plane, we need to rotate the A-axis 90 degrees positive. Then, use a centering bar to measure the machine position where the datum plane is located. In the relative coordinate setting, set the Y coordinate to “0”.

measuring the machine position after rotation

 

Step 3: Measure the Value of the Datum Plane

Next, rotate the A-axis 180 degrees in the negative direction. Same as the last step, we need to measure the machine position on the other side of the datum using the centering bar. Then, check the current relative Y value of the machine. For example, if we assume the Y value is “92mm”, the centering diameter is 10mm centering diameter, and the fixture datum to the rotary table is 41mm.

determine the Y value

 

Step 4: Determine the Position of the Rotation Center in the Y-axis

Referring to the values in the previous step, we can calculate that 92/2 = 46mm, so half of the Y value of 46mm. Then, we move the centering bar 46mm negatively towards the Y-axis.

As shown by the picture, the centering bar is now just aligned with the rotational axis of the rotary table. At the time, the position of the alignment point is the zero point of the Y value of the machine. In this way, we have completed half of the operation work.

find the Z position

 

Step 5: Find the Position of the Rotation Center in the Z-axis

Finding the Z value is relatively simple. After the rotary table returns to the A0 position, the zero point of the Z-axis of the rotary axis can be determined by moving down 41mm with the datum surface as the calculation base. This value is calculated using the formula “(92-10)/2”, where 92 is the Y-value found earlier and 10 is the diameter of the centering bar. By applying this formula, the Z value is determined.

Finally, the intersection of the Z and Y axis is the rotation center around the X axis. With these steps, we can determine the rotation center of the 4-axis rotary table.

Coordinate Setting in Programming

After determining the center value, in the programming software, we need to synchronize the program coordinates with the rotation axis of the 4-axis rotary table (relative distance of the coordinates to the fixture datum). Then we can output the program for all machined surfaces. So, the machining of multiple faces of a part can be completed by one coordinate.

Conclusion

By determining the rotation center of the 4-axis rotary table, we can complete the machining of multiple surfaces or four-axis simultaneous machining in a single clamping process with one coordinate. It also avoids the trouble of setting the machining coordinates for each machined surface during multi-face machining. In this way, we can ensure relative accuracy between the machined surfaces.

Types Of Milling Explained: Know All Milling Operations

Milling is inarguably the backbone of the manufacturing industry, playing a direct role in high-quality production in industries including aerospace, automotive, medical, and defense. Milling operations are highly versatile and capable of handling complex geometries with precision and speed. In this article, we will discuss the fundamentals of CNC milling and explain various milling operations, helping to choose the right milling type for your applications.Milling is a machining process t...

Types Of Milling Explained: Know All Milling Op...

Machining Allowance Explained: Its Calculation And Matters

Machining allowance is a fundamental concept in manufacturing. It is a common engineering practice in CNC precision machining, ensuring dimensional accuracy, surface quality, and the production of reliable and functional components for a range of industries, including aerospace, defense, and medical. This article attempts to answer the question: what is machining allowance? We will take a deep dive into the concept of machining allowance and discuss why machinists leave machining allowanc...

Machining Allowance Explained: Its Calculation ...

Tournage étagé et tournage conique : Quelles sont les différences ?

Le tournage est une opération d'usinage fondamentale qui soutient l'industrie manufacturière depuis des siècles. Il continue d'évoluer et constitue encore aujourd'hui une technique de fabrication essentielle. Cet article aborde deux types d'opérations de tournage : le tournage par étapes et le tournage conique. Nous explorerons le processus de tournage par étapes et le processus de tournage conique et expliquerons leurs différences.Le tournage est essentiellement une opération de coupe au cours de laquelle un outil de coupe affûté façonne une pièce rotative en enlevant de la matière de sa surface....

Tournage étagé ou tournage conique : Quelles sont les diffé...

Comment éviter les collisions entre machines dans le processus d'usinage ?

Les collisions avec les machines ont toujours été un défi inévitable dans l'usinage des prototypes et des pièces. Les erreurs de l'opérateur, comme le fait de ne pas effectuer les réglages de l'outil, peuvent entraîner des collisions. Il en résultera des outils cassés, des pièces mises au rebut, des commandes à refaire et des matériaux à retraiter. En outre, en l'absence de dispositif de réglage automatique des outils, le réglage manuel des outils lors de l'entrée d'une erreur dans les données de la valeur Z peut également provoquer des collisions avec la machine. Dans cet article, nous partagerons nos expériences résumées pour vous aider à éviter ce problème. Avant de...

Comment éviter les collisions entre machines dans l'usinage...
Développez plus !