搜尋整個車站 鋁製零件 二十二五

如何避免加工過程中的機器碰撞?

案例研究 資源 112

Machine collision has always been an inevitable challenge in prototype and part machining. Operator errors, such as failing to perform tool settings, can lead to crashes. It will result in broken tools, scrapped workpieces, and reordering and reprocessing materials.

In addition, without the automatic tool setter, manual tool setting when entering Z-value data error can also cause machine collision. In this article, we will share our summarized experiences to help you avoid this issue.

broken workpiece

Three Main Causes Of Machine Crashes

Before understanding how to avoid workpiece damage caused by machine collision, it is essential to understand the main reasons behind them.

Toolpath Issues By Programming Engineers

The CNC programming software MasterCam uses a method of adopting elements of surfaces and lines for machining. If the auxiliary surfaces are not fully enclosed and have missing areas, there is a risk of machine collision. However, these risks can be identified through computer-simulated machining verification, which can check for overcuts on the workpiece to avoid the risk.

CNC Operator’s Operational Issues

There are commonly three setting problems that will cause the crashing.

  • Calling the Wrong Program for Machining: CNC machine operations are controlled by program instructions. When calling a program for machining, the operator must verify that the program name, tools, and clamping lengths match the program sheet.
  • Calling the Wrong Coordinate: Sometimes, multiple workpieces are machined simultaneously on a CNC machine, there are multiple coordinates such as G54 and G56. Therefore, Calling the wrong coordinate can also lead to machine collision.
  • Missing Tool Setting or Incorrect Z-Value Data Entry: After the program starts, the tool movement needs to match the actual position of the tool tip with the Z-value data displayed on the machine screen. If there is a significant discrepancy between them, the machining process should be immediately stopped to recheck the program and tool setting data for errors.

Mechanical Failures or Tool Holder Wear

While the probability of this happening is low with regular maintenance and care of equipment and tools, it can still lead to tool drops and crashes during machining.

How To Prevent Machine Collision Using Trial Cutting Methods?

After understanding the main causes of machine collision, it should implement effective preventive measures. In this section, we will focus on how to adopt trial-cutting methods to avoid machine collision when tool setting is missed or Z-value data entry errors occur.

Trial Cutting Method for Workpieces with Frames

When a workpiece has a frame, the boundary line is typically used for trial cutting. As shown in the figure, the yellow line represents the boundary line, and only a short distance needs to be trial cut.

trial cutting method

In the trial cutting process, the Z-value height should be the same as the border height. With a 200mm straight distance and a feed rate of 3000F/MIN, the trial machining time is 4 seconds, plus about 2 seconds for lowering and raising the tool, totaling around 6 seconds.

The above is a simple method that uses the same spot for trial cutting with each tool. So it is only to verify if the tool setting is too deep, avoiding overcutting or crashing.

Trial Cutting in Different Machining Areas

In most cases, except for face sweeping tools, each machining tool should perform trial machining in different areas. In the trial cutting process, the machining depth can be set to the frame plane -0.02MM. If the tool setting is correct, a slight machining mark will be visible after trial machining; if too deep, a more profound mark will appear; if too high, no mark will be seen.

Since this method relies on visual judgment, the error margin is estimated to be 0.05-0.1MM. Unlike using the same spot for trial cutting with each tool, this method checks if the tool setting is too high.

As the marked number in the above figure, the number of trial cuts can be adjusted based on the number of machining tools. However, each trial cut requires a manual judgment, taking about 2 minutes per trial, making it unsuitable for mass production.

Face Sweeping Machining for Workpieces with Frames

For parts with borders that require face machining, the first face sweeping tool does not need trial machining as its starting point is outside the workpiece.

cutting tool path

Trial Cutting for Workpieces without Frames

For workpieces without frames, such as those needing re-machining after 3-axis processing of both front and back sides. The trial cutting is done on the positioning reference or fixed block to avoid machine collision.

What Is SFM? A Complete Guide To Surface Feet Per Minute In Machining

SFM, meaning Surface Feet per Minute in CNC machining, measures how fast a cutting tool moves across a workpiece. It is expressed in feet per minute. SFM combines the tool or workpiece diameter with the spindle speed (RPM). A larger diameter or higher RPM results in a higher SFM. Machinists use surface feet per minute to determine the best cutting speed for a material. Different materials have recommended SFM values for optimal performance. For example, 303 annealed stainless steel has an...

What Is SFM? A Complete Guide To Surface Feet P...

CNC 加工成本:什麼會影響及如何節省成本?

CNC 加工是一種用於製造精密零件和複製驚人設計的技術。CNC 加工有許多優點,例如可提高零件生產速度。由於是由電腦控制,因此也可減少製造過程中的人為錯誤。然而,許多人似乎並不了解其成本背後的原理。您使用的機器和材料會影響價格。時至今日,許多客戶仍在煩惱如何計算 CNC 加工成本。隨著數控加工技術的不斷進步...

CNC 加工的成本:什麼會影響 CNC 加工成本?

加工金屬時產生刀痕的原因與解決方案

精密金屬零件通常使用各種精密加工技術製造,其中 CNC 加工是一種常見的方法。通常,精密零件通常對尺寸和外觀都有很高的要求。因此,在使用 CNC 加工鋁和銅等金屬時,成品表面出現刀痕和線條是一個值得關注的問題。本文將討論在加工金屬製品過程中造成刀痕和線條的原因....。

機械加工中刀痕的成因與解決方案

操作 4 軸 CNC 機床時,如何確定旋轉軸的旋轉中心?

現今,四軸旋轉工作台已是加工車間常見的設備。為了在一個座標完成多個面的加工,編程座標必須與旋轉工作台的座標同步。在這篇文章中,我們將與大家分享一個確定四軸旋轉工作台旋轉中心的方法。在這裡,我們展示了一個繞著工具機 X 軸旋轉的四軸旋轉工作台,其中旋轉軸被稱為 A 軸。總而言之,...

如何確定旋轉軸的旋轉中心...
擴展更多!