搜尋整個車站 鋁製零件 二十二五

如何透過設計製程路徑和夾具來加工多面體鋁合金零件?

案例研究 資源 1173

In the field of machining and manufacturing, selecting the appropriate machining strategy is important for improving production efficiency. In common, the polyhedral machined parts have complex geometries and tight tolerance requirements. So how choosing a suitable processing route for machining such parts requires comprehensive considerations.

In this article, Washxing provides an analysis of different process routes for polyhedral aluminum parts and compares the 3+2-axis CNC machining and 3-axis CNC machining methods. We also highlight its fixture design considerations. Let’s get into it.

aluminum polyhedral part drawing

Product Introduction

The product is a precision aluminum polyhedral component used in semiconductor equipment, with a production quantity of 800 pieces. Due to the need for assembly with other parts, it requires high dimensional tolerances, especially for hole tolerances and geometric tolerances. Additionally, these machined parts require black anodizing to prevent oxidation and improve wear resistance.

Key Dimensions Machining Requirements

  • Flatness: 0.01;
  • Two ∅2.3+0.015mm precision holes, with a positional tolerance of 0.05mm;
  • Two ∅3.5+0.015mm precision holes, with a positional tolerance of 0.05mm;
  • Two ∅2.5+0.015mm precision holes, with a positional tolerance of 0.05mm;
  • Perpendicularity relative to Datum A: 0.02mm
  • Linear dimension: 38.88-0.02mm

key machining requirements of polyhedral part

Machinability Analysis

Let‘s check the machinability characteristics of this polyhedral component. The maximum external dimensions of the product are 46.88×16.41×10.91 mm. Its machining tolerance requirements are as follows:

  • The strictest dimension tolerance of the part is 38.88-0.02 mm, which can be maintained by two times fine milling at the same path.
  • Other tolerances of ±0.03 mm and above can be guaranteed with a single fine milling.
  • The three sets of +0.015 mm precision holes can be ensured through precision reaming.
  • Positional accuracy is best achieved by machining the measured hole and reference datum in the same process.
  • Perpendicularity of 0.02mm can be maintained by machining in the same process as Datum A or using Datum A as the reference.
  • The flatness of 0.01 requires proper machining parameters. So this finishing machining should employed later in the whole process to minimize deformation.

Finally, the product also requires age hardening to release material stress and ensure long-term dimensional stability. Since the product is not big and the material removal rate is less than 80%, a single precipitation heat treatment before machining is sufficient.

Process Route Comparison for Machining Aluminum Polyhedral Parts

Comparing the two process routes in the following picture shows that the 3-axis machining solutions require five process procedures, each needing a custom fixture. In contrast, using 3+2 axis machining, supplemented by a 3-axis machine to remove residual material at the joint position, requires only two process procedures and fewer fixtures.

For small batch orders from 50 to 1000, the second machining solution has a significant cycle time advantage. At the same time, it better guarantees the key dimensions by completing them in the same process procedure.

two machining routes comparison of polyhedral parts

Combine 3+2-axis with One-Time 3-axis Machining

However, the advantage of the 3-axis machining solution lies in its ability to duplicate many parts per process. So it can improve machine utilization in the machining. On the other hand, the 3+2 axis machine typically processes one part at a time, reducing machine utilization due to the frequent loading and unloading of workpieces. In addition, we need to use machine tool detection probes to compensate for positioning errors during machining changeovers.

During the machining process, we need to take everything into account. Finally, we chose to combine 3+2 axis machining and a one-time 3-axis process for producing the polyhedral parts, which is the most efficient processing solution.

Highlights of Fixture Design

As we mentioned above, the 5-axis machining route typically processes one part at a time. However, through careful analysis and design, we can achieve machining 2 workpieces in one setup. Combined with zero-point quick-change bases, as shown in Figure 3, two parts can be machined simultaneously. We named these A/B bases, where the A base processes inside the machine while the B base is clamped outside. This improves the problem of under-utilization of machining time on 5-axis machines.

fixture design of polyhedral part

Conclusion

This article compared two process routes for machining an aluminum polyhedral part. We should consider the product order quantity and dimensional requirements during the CNC machining process. Finally, the combined 3+2-axis and 3-axis process solution was selected, and Washxing successfully delivered the order with quality and effectiveness. If you have any machining requirements for your project, just contact Washxing for professional custom CNC machining services.

操作 4 軸 CNC 機床時,如何確定旋轉軸的旋轉中心?

現今,四軸旋轉工作台已是加工車間常見的設備。為了在一個座標完成多個面的加工,編程座標必須與旋轉工作台的座標同步。在這篇文章中,我們將與大家分享一個確定四軸旋轉工作台旋轉中心的方法。在這裡,我們展示了一個繞著工具機 X 軸旋轉的四軸旋轉工作台,其中旋轉軸被稱為 A 軸。總而言之,...

如何確定旋轉軸的旋轉中心...

What Is SFM? A Complete Guide To Surface Feet Per Minute In Machining

SFM, meaning Surface Feet per Minute in CNC machining, measures how fast a cutting tool moves across a workpiece. It is expressed in feet per minute. SFM combines the tool or workpiece diameter with the spindle speed (RPM). A larger diameter or higher RPM results in a higher SFM. Machinists use surface feet per minute to determine the best cutting speed for a material. Different materials have recommended SFM values for optimal performance. For example, 303 annealed stainless steel has an...

What Is SFM? A Complete Guide To Surface Feet P...

加工金屬時產生刀痕的原因與解決方案

精密金屬零件通常使用各種精密加工技術製造,其中 CNC 加工是一種常見的方法。通常,精密零件通常對尺寸和外觀都有很高的要求。因此,在使用 CNC 加工鋁和銅等金屬時,成品表面出現刀痕和線條是一個值得關注的問題。本文將討論在加工金屬製品過程中造成刀痕和線條的原因....。

機械加工中刀痕的成因與解決方案

CNC 加工成本:什麼會影響及如何節省成本?

CNC 加工是一種用於製造精密零件和複製驚人設計的技術。CNC 加工有許多優點,例如可提高零件生產速度。由於是由電腦控制,因此也可減少製造過程中的人為錯誤。然而,許多人似乎並不了解其成本背後的原理。您使用的機器和材料會影響價格。時至今日,許多客戶仍在煩惱如何計算 CNC 加工成本。隨著數控加工技術的不斷進步...

CNC 加工的成本:什麼會影響 CNC 加工成本?
擴展更多!